

Agilent 5600LS AFM High-resolution Imaging Molecular-level Understanding of n-Alkanes Self-Assembly onto Graphite

Application Note

Jing-jiang Yu, Ph.D. Agilent Technologies

Figure 1. AFM topographic image of n-C₃₆H₇₄ on graphite. Scan size: 350 nm × 350 nm.

Figure 2. AFM topographic image of $n-C_{36}H_{74}$ on graphite. Scan size: 55 nm × 55 nm.

The adsorption of organic molecules from solution onto a solid surface has attracted tremendous attention as it is fundamentally associated to many phenomena of both industrial and academic relevance. Governed by an intricate balance between adsorbate-substrate and adsorbateadsorbate interactions, spontaneous self-organization of molecules at the interface may lead to the formation of delicate ultrathin films with nanometerscale ordered surface structures due to the molecular-level packing in a particular way. Various techniques have been reported to investigate those organic layers. For instance, differential scanning calorimetry (DSC) provides an effective means to probe the surface phase behavior. The structural information normal to the interface, to some extent, can be extracted from neutron reflectivity measurements. So far, the real time 3D structural characterization with atomic or molecular scale details of the assemblies especially the top layer comes mainly from scanning probe microscopy techniques. In this application brief, the capability of atomic force microscopy (AFM) to directly visualize soft thin film materials with true molecular resolution is demonstrated using self-assembly of n-C₃₆H₇₄ molecules on graphite as an example. All the data displayed here are acquired from an Agilent 5600LS system with a 90 µm large scanner. A typical AFM topographic image of n-C₃₆H₇₄ upon adsorption on HOPG is shown in Figure 1, from which rich information about this sample is revealed. First, molecules are aligned on the substrate with long-range

order and exhibit a striped morphology. Second, existence of local defect areas is captured. As can be seen, the whole image is divided into four segments by two long and one short domain boundaries and a protrusion island is observed near the bottom location. Those surface features correspond to adsorbed molecules in an amorphous state. Third, two different orientations of the molecular packing are identified. The stripes in the left-upper corner are exactly 60° rotated with respect to those in the remaining three domains, reflecting the impact of underneath substrate (i.e., the 6-fold symmetry graphite) on n-C₃₆H₇₄ alignment on the surface. Figure 2 is another n-C₃₆H₇₄ / graphite topography image with a larger magnification to deliver important information at single molecular level. It shows that the stripe width is about 4.5 nm, which is matching well with the molecular length of n-C₃₆H₇₄ with a fully extended configuration. Furthermore, the linear backbones (i.e., hydrocarbon chains with an all-tans configuration) of individual n-C₃₆H₇₄ molecules are resolved at lower part of the image. These results unambiguously illustrate that n-C₃₆H₇₄ molecules are lying down and orderly aligned on graphite to form a lamellar packing structure.

In conclusion, AFM is a powerful surface characterization tool with an unprecedented high-resolution. Materials surface structures with sub-5 nm size in lateral dimensions can be resolved clearly, thus making it possible to achieve molecular-level understanding of the adsorption behavior of long-chain molecules at the solid-solution interface.

AFM Instrumentation from Agilent Technologies

Agilent Technologies offers high-precision, modular AFM solutions for research, industry, and education. Exceptional worldwide support is provided by experienced application scientists and technical service personnel. Agilent's leading-edge R&D laboratories are dedicated to the timely introduction and optimization of innovative and easy-to-use AFM technologies.

www.agilent.com/find/afm

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

	Ph	one	or	Fax
--	----	-----	----	-----

United States:	(tel) 800 829 4444 (fax) 800 829 4433	
Canada:	(tel) 877 894 4414 (fax) 800 746 4866	
China:	(tel) 800 810 0189 (fax) 800 820 2816	
Europe:	(tel) 31 20 547 2111	
Japan:	(tel) (81) 426 56 7832 (fax) (81) 426 56 7840	
Korea:	(tel) (080) 769 0800 (fax) (080) 769 0900	
Latin America:	(tel) (305) 269 7500	
Taiwan:	(tel) 0800 047 866	
	(fax) 0800 286 331	
Other Asia Pacific Countries:		
	tm_ap@agilent.com	

tm_ap@agilent.com (tel) (65) 6375 8100 (fax) (65) 6755 0042

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2009 Printed in USA, April 8, 2009 5990-3956EN

Agilent Technologies